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Abstract-To test whether electromyogram (EMG) is  nonlinear
deterministic signal or just random noise, we comprehensively
analyze four EMGs of an adult woman. At first, we calculate
the correlation time, L-Z complexity, approximate entropy
(ApEn), maximum Lyapunov exponent (Ly1) and correlation
dimension (Dcorr) of each EMG data and its ten surrogate data.
We find that all the results are quite different between each
original EMG and its ten surrogate data, i.e. EMG is not a
linear random noise, but a nonlinear deterministic signal
(though it does not like a low dimensional chaos). EMG is also
assessed with recurrence plot analysis (RPA), iterated function
system (IFS) clumpiness test, singular-value decomposition,
and Pearson product-moment correlation coefficient (Pearson’s
correlation). All the results of these assessments show that EMG
is different from noise. Thus we conclude that EMG is a signal
of high dimensional (Dcorr range from 4 to 6) chaos.
Keywords-EMG, chaos , surrogate data method, Dcorr, Ly1,
ApEn

I. INTRODUCTION

As the use of EMG is very convenient and fast, it is now
becoming increasingly a powerful measure to get
information and to diagnose about the muscular and nervous
systems [1,2]. For example, it can diagnose some causes of
muscle weakness or paralysis, muscle or motor problem (e.g.
involuntary muscle twitching and nerve damage or injury).
But up to now, most methods of EMG are still based on
linear and statistical analysis. Only a few people dealed with
nonlinear principle and method. So far as our opinion, most
physiological processes are nonlinear, most probably so does
EMG. Therefore we think in the study of EMG, it is
important to know whether EMG is nonlinear in its character
or not. In the past two decades, some people examined it,
but the methods they used were all too simple to draw
convincing conclusion. In this paper, we use a fairly
comprehensive nonlinear dynamical analysis of 4 EMG data
of an adult woman. Synthesizing all of our results and
analysis, we can conclude that EMG obeys nonlinear
deterministic law. It is probably chaos with Dcorr greater than
4 and smaller than 6.

II. METHODS

A. Data acquisition

We take four EMG data from the same subject, which are
sampled respectively from left back and right back before
and after therapy (an active exercise). Sampling frequency is
1000Hz. The length of each data is 10000 points in our

analysis (all the actually measured data length are much
greater than this). Fig. 1 is the EMG of left back before
therapy. The others are similar to this one.

     
Fig. 1. An EMG signal, the ordinate is in an arbitrary unit

B. Dcorr  and Ly1

We reconstruct phase space for each EMG data with time
delay tau equal to the measured correlation time (because
the appropriate reconstruction of phase space is not very
sensitive to the value of tau, it is sufficient accurate for such
a choice), embedding dimension (Demb) goes from 2 to 10,
then calculate Dcorr  and Ly1 for each Demb , and plot the Dcorr

- Demb curve.

C. ApEn

 ApEn is a recently introduced characteristic quantity for
quantifying regularity or complexity, which facilitate the
analysis of noisy and short (even as short as 100 points) data,
and is robust to outliers, so it is very suitable for the analysis
of biological signals  [3,4]. In ApEn (m, r), the parameter m
is the length of compared runs, and r is effectively a filter.
When we compare ApEn (m, r)(A) with ApEn (n, s)(B) for
two different systems A and B, We must take m = n and r = s,
otherwise the result is without meaning.

D. Method of surrogate data

The essential of this method is as follows [5]:
a.  For a given original data, construct a set of random data
(called the “surrogate data”). Each of the surrogate data is
obtained just by shuffling the order of the original data. So
all the surrogate data have the same statistical properties
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(probability distribution, mean value and standard deviation,
et al.) as the original data. (Another common method for
obtaining surrogate data is to shuffle the phases of the
Fourier components of the power spectrum of the original
data. In this way the surrogate data has the same power
spectrum and correlation function as the original data).

If the original data and its surrogate data differ
significantly, then the original data under studying is not a
linear stochastic signal, i.e. it represents a nonlinear
deterministic process. If there is  no significant difference
between the original data and surrogate data set, this means
that the original data also represents a linear stochastic
process.
b.  For practical test for nonlinearity, choose certain
characteristic quantity Q (e.g. Dcorr, Ly1, complexity and
ApEn, et al.), calculate Q for both the original data and its
surrogate data. Define the Significance of difference as:

S = | < Qsurr > - Qorig | / SD               (1)
                                   

where Qorig is the value of Q for the original data, < Qsurr >
and SD denote respectively the mean and standard deviation
of the surrogate data set.

Criterion:
1) If S >= 2.0, the original data obeys a certain nonlinear

deterministic law, and it is probably chaos (of course, we
have to also examine the values of Dcorr, Ly1, et al.).

2) If S < 2.0, the original data is a linear process, i.e. it
does not obey any nonlinear deterministic law.

III. RESULTS

A. Dcorr, Ly1 and correlation time

Fig. 2. Change of Dcorr with embedding dimension (Demb) of the four
EMGs, which respectively corresponding to left back before therapy (A),
left back after therapy (B), right back before therapy (C) and right back
after therapy (D) for the same subject

The results for Dcorr are shown in Fig 2. We see Dcorr - Demb

curves are all without saturated horizontal plateau. This is
caused by effect of noise component in the data. Thus we
cannot simply determine Dcorr by these curves. For the sake
of determining best embedding and correct Dcorr value, we

also use the method of false nearest neighbors and the
method of singular value decomposition (Fig. 5. B) [6,7].
Both these two methods show that the correct Demb is in the
range of 6 to 8. Thus from Fig.2, we see the four
corresponding Dcorr are greater than 4 and smaller than 6.

Calculated Ly1 of the four EMG are 0.217, 0.216, 0.208,
0.227 (with Demb = 7). They are greater than zero.

The Correlation times are 1.941, 2.183, 1.845, 1.901
respectively while that of the stochastic signal is usually
smaller than 1.
  These results all support EMG being a nonlinear chaos.

B. ApEn

ApEn values of the four EMGs are 1.252, 1.211, 1.345
and 1.295 respectively, whereas that of a measured
stochastic noise is 1.636. We can see there is no significant
distinction among the four original ApEn values, whereas
they are obviously different from that of noise. This shows
the complexity of EMG is less than noise, i.e.  EMG is more
regular than noise.

C. Method of surrogate data

a.  Graph of Dcorr

Fig. 3.  Dcorr - Demb curves of the original data (dash line) and the
ten surrogate data (solid lines).
      

Fig.3 is a set of typical measured Dcorr - Demb curves. We
see the original Dcorr  - Demb curves are far from the
corresponding tolerance band of the set of surrogate data.
This means that EMG is not linear stochastic data, but is
signal (contaminated with noise) obeying nonlinear
deterministic law. The results of the three remainder EMGs
are similar.

b. Significance of difference

Take ApEn and L-Z complexity as characteristic quantity
Q and calculate their significances of difference separately:

1) Values of <ApEn> and SD of the four set of ten
surrogate data are 1.623, 1.621, 1.623, 1.619 and 0.0124,



0.0168, 0.0233, 0.0197 respectively. Thus from (1), S values
are 29.9, 24.4, 11.9 and 16.4 respectively. They are much
greater than 2.

2) Calculation of L-Z complexity is similar to that of ApEn,
L-Z complexities of the four original EMG data are 0.751,
0.710, 0.748 and 0.765. While the mean values of the four
set of surrogate data are 1.029, 1.031, 1.028, 1.029 (L-Z
complexity of white noise is equal to 1.0 by definition), and
the SD values are 0.0668, 0.0043, 0.0056, 0.0044. Thus the
S values are 41.6, 74.7, 50.0 and 60.0. These are all much
greater than 2.

From these S values for ApEn and L-Z complexity and the
criterion, we may conclude that EMG is not linear noise
signal, but obeys a certain nonlinear deterministic law.

D. RPA

Recurrence plot is a useful tool to identify whether there
is some deterministic law in the data [8]. It is particularly
useful in dealing with non-stationary data. The recurrence
plot is an array of dots with x(i) as both abscissa and
ordinate (i=1, … , N) (where N is the length of data) in N 
N square. For random data, the obtained plot will be
completely disorder and uniform; whereas if there exists
deterministic fact in the data, the plot will have some
recurrent points which form some diagonal line segments of
different lengths.

Fig. 4 is the recurrence plot of one EMG data. We see
there are many short lines parallel to the diagonal. So it is
also an evidence of deterministic structure of EMG.

  
Fig. 4.  Recurrence plot of the EMG signal

E. Complementary methods

   We also use some additional methods to conform the
above assertion. These are:

a.  Singular value decomposition

This method is based on the analysis of the eigenvalues of
the correlation matrix sorted from largest to smallest versus

the order of matrix (M). The number of significant
eigenvalues, like the correlation dimension, is a measure of
the complexity of the system. For pure deterministic signal,
the eigenvalue curve will fall abruptly to zero at the value of
M equal to the correct Demb. For nois e, the eigenvalues are
all very large and the curve does not fall obviously (Fig. 5.
A). Fig. 5. B is a curve for one EMG data. We see even
though the EMG data is contaminated with noise, but it is a
deterministic signal with a large Signal-to-Noise ratio, the
correct Demb is about 6-8.

Fig. 5.  Eigenvalues of the correlation matrix for a noise (A) and an
EMG (B).

b.  IFS clumpiness test

Divide the range of data into 4 quartiles [9]. Random data
(white noise) fills the square uniformly, while colored noise
and chaotic data produce pattern or clumps. The eye is very
sensitive to these patterns of this sort.

Figure 6 is such a pattern of one EMG, we see it is
obviously different from uniform (noise) but has some
structure, i.e. EMG is  evidently different from stochastic
noise.

               
Fig.6 IFS clumpiness test of one EMG



c.  Pearson’s correlation

This is a measure of how strongly each data point
correlates with its immediate predecessor [10]. It ranges
from +1 (perfect correlation) to –1 (perfect anticorrelation)
with 0 representing white noise.

Our results are 0.765, 0.794, 0.753, 0.752, so EMG is
quite different from noise and has strong positive
correlation.

IV.CONCLUSION

Synthesize all the above results  and analysis , we can draw
the conclusion that EMG obeys a certain nonlinear
deterministic law and its Dcorr value is greater than 4 and
smaller than 6, namely, it is  probably a high dimensional
chaos.
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